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Abstract

The dynamic characteristic of the tires is a key factor in the road-induced interior noise in passenger vehicles. The tire

acoustic cavity is a very important factor in the tire dynamics and it must be considered in analyses. This paper de-

scribes a closed form analytical model for tire-wheel structures. In order to incorporate the dynamics of the cavity on

the tire response, the tire acoustic-structure coupled problem is solved simultaneously. The tire is modeled as an annular

cylindrical shell where only the outside shell is flexible, i.e. tire sidewalls and wheel are assumed rigid. From the an-

alytical solution of the eigenproblems, both the tire structure and cavity acoustic responses are expanded in terms of

their eigenfunctions. The main objective of the model is to have an efficient tool to investigate the physical coupling

mechanisms between the acoustic cavity and the tire structure without the need of complicated numerical model such as

finite elements. The result shows that the proposed model captures the main mechanisms of the effect of the tire air

acoustic on the tire dynamics.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The automotive industry is involved in a continuous endeavor to improve the noise and vibration

characteristics of passenger vehicles. The reduction of interior noise is one of such efforts. Under road

condition, the noise spectrum inside a passenger vehicle is dominated by peaks. In the low frequency range

<400 Hz, the interior noise is mainly structural borne noise and many of the peaks are due to structural
resonances, e.g. body, tire-wheel assembly, and so forth. In a road test, Sakata et al. (1990) showed that

noise inside the vehicle compartment correlated very well to the forced measured at the spindle below 400

Hz, thus validating the structural borne nature of the low frequency noise. In this same work, Sakata et al.

(1990) have also for the first time shown that the tire air cavity resonances shows up as two distinct narrow
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peaks in the 200–300 Hz band of the noise spectrum. The implication of this work is that the acoustic

resonances results in a force applied to the vehicle�s spindle, which in turns drives the vehicle interior

acoustic field. Therefore, in recent years the tire air cavity acoustics has become a major feature of interior

noise studies and of great concern to the industry.
Simple one-dimensional models have been used to predict the cavity resonance frequencies of the un-

deformed tire geometry by both Sakata et al. (1990) and Thompson (1995). The fundamental acoustic

resonance frequency corresponds to a plane wave propagating around the cavity torus, i.e. circumference of

tire equal to acoustic wavelength. In addition, some physical insight has also been gained into the un-

derstanding of the direction of the forces acting on the spindle due to these acoustics resonances, Thompson

(1995). Finite element (FE) models of the acoustic cavity were also used to investigate the effect of the

deformation resulting from the contact with the ground, Sakata et al. (1990) and Yamauchi and Akiyoshi

(2002). The results from this study showed that the deformation of the tire destroyed the axis-symmetry of
the cavity and resulted into two closed resonances.

For the case of structure borne noise, the most effective approach to reduce the noise is by modification

of components in the structural path. Thus, it is common practice to develop large detailed computer

models of the vehicle components using FE. Subsequently, the component models are integrated using sub-

structuring techniques for analysis of the system. The tire model is one of such sub-structures. To this end,

Clayton and Saint-Cyr (1998) numerically incorporated the dynamics of the tire acoustic cavity into an

existing 130,000 degree-of-freedoms tire FE model. Clayton and Saint-Cyr (1998) modeled the tire cavity

using also FE and three formulations of fluid-structure coupling were investigated. Pietrzyk (2001) also
developed FE models of tires and validated them with experimental results obtained on a non-rotating tire.

Yamauchi and Akiyoshi (2002) have used a detailed FE models to investigate potential noise control so-

lution to the cavity acoustic resonances problem.

Here a simple and effective closed form analytical model of the tire including the effect of the cavity

resonance is developed. This model offers some advantages over large numerical FE models. One of the

main advantages of the proposed model is that it can be used to uncover the coupling mechanisms between

the acoustic cavity and the tire structure. These mechanisms are not easily determined and sometimes

hidden in large numerical models. Another advantage of having a simple model is that it is more efficient to
investigate potential noise control devices. Finally, the model presented can also predict the effect of the

cavity resonance on the spindle forces and thus potentially used in conjunction with body structure model

for interior noise predictions. In order to incorporate the dynamics of the cavity, the tire acoustic-structure

coupled problem is solved simultaneously.
2. Structural theory

For an analytical closed form analysis, the tire was modeled as two shells of revolution and two annular

plates as shown in Fig. 1. In this model, the outer shell was assumed to be the only elastic component while

the inner shell and the two annular side plates are considered rigid. The outer shell has thickness h, radius a,
and the inner shell radius is b. The structure connecting the tire to the spindle is also considered rigid. The

boundary conditions for the outer shell were assumed to be simply supported, i.e. shear diaphragm edge

conditions. The system is also assumed to be stationary, i.e. no rotation. The external excitation is a point

force acting normal to the shell.

The equations of motion used for the thin circular cylindrical shell follows the Donnell–Mushtari theory,

Leissa (1993). The first step in the model of the tire structure is to solve for the eigenvalue problem of the

self-adjoint Donnell–Mushtari operator. The displacement vector is defined as fu; v;wgT where they are the

axial ðuÞ, tangential ðvÞ, and radial ðwÞ displacement components. For the simply supported cylindrical shell
of finite length, L, the displacement vector is given as



Fig. 1. Simplified tire model.
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In Eq. (1), each pair of indices ðm; nÞ defines the modal pattern, i.e. m defines the axial variation while

n defines the azimuthal variation of the mode shape. The displacement vector in (1) defines the mode
shapes. To find the mode natural frequencies, the Donnel–Mushtari operator is applied on the displace-

ment as
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where r2 is the Laplace�s operator, r4 � r2r2, and K is the non-dimensional thickness parameter defined

by K ¼ h2=12a2. The material properties are E¼Young�s modulus, q¼ density, and m¼Poison ratio of the
tire. Replacing (1) into (2) leads to
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where X is called normalized frequency given as
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1� v2Þ

E

r
ax ð4Þ
The ‘‘in-vacuum’’ eigenvalue problem in (4) will yield the shell natural frequencies and mode shapes. For

each pair ðm; nÞ defining a response pattern, the eigenvalue problem results in three natural frequencies

which define three modes. In general, these modes are characterized by the dominance of one of the dis-

placement vector component, i.e. longitudinally, tangentially, and radially dominated modes. The eigen-
values and eigenvectors are
Xmnj and
U ðjÞ
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V ðjÞ
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W ðjÞ
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8<:
9=; for ðm; nÞ j ¼ 1; 2; 3 ð5Þ
By replacing the eigenvector from (5) into (1) leads to the eigenfunctions (or mode shapes)
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Characteristic radial modal patterns for the circular cylindrical shells supported at both ends by ‘‘shear

diaphragms’’, are shown in Fig. 2.
Fig. 2. Nodal patterns for circular cylindrical shells.
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For the ‘‘in-vacuum’’ forced response, i.e. without the tire acoustic coupling, the differential equation of

motion is now given by
½Lc�
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� u

v
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0

0

fw

8<:
9=; ð7Þ
where Lc is the shell differential operator defined in (2) and the external force is applied only in the radial

direction. The response is expressed in terms of a linear combination of the modes as
u
v
w
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where Amnj is the modal amplitudes of the ðm; n; jÞ mode and ½Umn� is the 3� 3 modal matrix for the modes

defined by the pattern ðm; nÞ. To solve for the modal amplitudes Eq. (8) is pre-multiplied by the transpose of

the modal matrix and integrated over the surface of the cylinder. Thus, the modal amplitudes are obtained

from the following uncoupled system of equations,
Kmn1 � X2Mmn1 0 0

0 Kmn2 � X2Mmn2 0

0 0 Kmn3 � X2Mmn3

24 35 �
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3. Acoustic theory

To account for the effect of the tire acoustic cavity response in the structural response, the acoustic mode

shapes and natural frequencies are first computed for the annular cavity assuming rigid boundary condi-
tions (Fig. 3).

The equation of motion for the acoustic cavity is given as
r2W ¼ 1

c2
d2W
dt2

ð10Þ
Fig. 3. Finite cylindrical cavity.
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with
Wðr; h; x; tÞ ¼ Wðr; h; xÞeixt ð11Þ

Eq. (10) reduces to the Helmholtz equation
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where
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and
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are the free field wave number and the Helmholtz self adjoin operator.
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The acoustic natural frequency, Blevins (1995), is then
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and the mode acoustic shape is given by
Wlqpðr; h; xÞ ¼ qc2GplðrÞ cosðphÞ cosðkxqxÞ with q; p; l ¼ 0; 1; 2; . . . ð17Þ
where
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where Jp is the Bessel�s function of first kind and Yp is the Bessel�s function of second kind. Orthogonality

conditions of the acoustic modes leads to the normalization factor, Klqp.
Z 2p

0

Z L

0

Z a

b
Wlqpðr; x; hÞWrsoðr; x; hÞrdrdxdh ¼ Klqpdlrdqsdpo ð19Þ
Fig. 4 illustrates a few acoustic modes shapes defined by the indices ðl; q; pÞ.

3.1. Coupled structural-acoustic problem

The cavity–structure interaction problem was solved knowing the ‘‘in vacuum’’ structure eigen-prop-

erties (mode shapes Umnðx; hÞ and natural frequencies) and the interior acoustic eigen-properties (mode

shapeWlqpðr; x; hÞ and natural frequencies), Fahy (2000). The pressure, i.e. fluid loading, is then expressed in

terms of the velocity response of the tire. Fig. 5 illustrates the problem of a structure and the acoustic

interior. It is important to remark that the description of the cavity-structural problem is quite complex due

to the six indices required to describe the structural and acoustic modes. Here a brief description of the

coupled problem will be presented for a general understanding of the solution approach.

The approach to solve the coupled problem is to include in the equation of motion of the tire the force
due to the interior pressure. However, the fluid forces depend on the velocity response of the structure

which leads to the fluid feedback problem depicted in Fig. 6.



Fig. 4. Acoustics modes shapes Wlqp.

Fig. 5. Structure radiating into an enclosed volume.
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The equation of motion of the system including the fluid loading is written as
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where the last vector in (20) represents the acoustic pressure acting on the tire. The acoustic pressure,

pða; x0; h0Þ, on the tire structure is given by
pða; x0; h0Þ ¼
Z L

0

Z 2p

0

ixq _wwðx; hÞGða; x; hja; x0; h0Þadhdx ð21Þ
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where _wwðx; hÞ is the radial component of the shell velocity response and Gðr; x; hjr0; x0; h0Þ is the Green�s
function defined by
Gðr; x; hjr0; x0; h0Þ ¼
XL

l

XQ
q

XP
p

Wlqpðr; x; hÞWlqpðr0; x0; h0Þ
Klqpðk2lqp � k2Þ ð22Þ
where ðp; q; lÞ represents an acoustic mode, and the integral of the product of two acoustic modes over the

volume of the cavity, V , defines the mode normalization factor, Klqp. The solution of the coupled problem is

again obtained by expanding the structural response in term of the ‘‘in vacuum’’ modes as
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where Amnj are now as the structural modal amplitudes including the fluid loading. Then, replacing (23) into

(20), it gives
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Once again this equation is pre-multiplied by the transpose of the modal matrix and integrated over the
surface of the structure as
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The acoustic pressure acting on the surface of the structure pða; x0; h0Þ is obtained from (20) where the

radial velocity component is replaced in terms of the structural modes and the modal amplitudes
pða; x0; h0Þ ¼
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Since the only velocity component of the structural response that couples with the cavity is the radial

one, in (26) only the radial modes are included in computing pða; x0; h0Þ in (26). Another implication of this

assumption is that the acoustic cavity will affect on the radial structural modes. Replacing (26) into (25) and

solving the integrals explicitly in terms of the unknown modal amplitudes of the radial modes, the following
coupled system of equations results
Table

Descri

Aco

(0,0,

Table

Index

Stru

mðxÞ
1

1

1

2

2

2

3

3

3

½K�
�

� X2½M �
	
� fAmng ¼ ffmng � X2½a� � fAmng ð27Þ
where ½K� and ½M � are diagonal matrices and their elements represents the modal stiffness and mass of

the radial modes; fAmng is the vector of modal amplitudes; ffmng is the vector of modal forces; and ½a� is
the fluid coupling matrix. The coefficients amn of this matrix are given by the product of the surface integrals

as
amn ¼
R L
0

R 2p
0

Umnðx; hÞWlqpða; x; hÞadhdx
R L
0

R 2p
0

Umnðx0; h0ÞWlqpða; x0; h0Þadh0dx0
Klqpðk2lqp � k2Þ ð28Þ
The coefficient in (28) represents the effect of the ðl; q; pÞ acoustic mode on the ðm; nÞ structural radial
mode. One of the advantage of the model develop here is that the interaction of the acoustic and structural

modes can be easily determine by inspection of the coefficients in (28). If the coefficient amn vanishes implies

that the ðl; q; pÞ acoustic does not affect the ðm; nÞ structural mode. This implies that acoustic and structural

modes that have the same azimuth variation will be coupled. In addition, inspection of the integral in (28)

will show the effect of the variation of the acoustic and structural modes on the coupling. The effect is

illustrated in Table 1. In this table, it is shown the coupling of the (0,0,1) acoustic mode with the (1,1), (2,1),

and (3,1) structural modes.

The modal amplitudes for the radial modes are obtained from Eq. (27), and the structural response is
then obtained from (23) and then the acoustic response is computed using (26). The resulting spindle force
1

ption of the effect of axial variation on the coupling between structural and acoustic modes of same azimuth variation

ustic ðlðrÞ; qðxÞ; pðhÞÞ Structural ðmðxÞ; nðhÞÞ

(1,1) (2,1) (3,1)

1) Coupling No coupling Coupling

2

and frequencies associated to the structural modes shapes

cture natural frequencies

nðhÞ j fmnj (Hz)

1 1 228

1 2 785

1 3 1328

1 1 517.9

1 2 1555

1 3 2629

1 1 1090

1 2 2328

1 3 3937
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Fz and moment My shown in Fig. 1 are also computed in the model. For the sake of brevity, this derivation

is not presented here but it can be found in the work by Molisani and Burdisso (2000).
4. Numerical example

The numerical example consists of a tire with 0.2 m outer radius, 0.15 m inner radius, 0.01 m thickness,

and 0.1 m width. Thus, the numerical example represents a 100/50R12 tire. The material properties used are
Table 3

Index and frequencies associated to the acoustic modes shapes

Acoustic natural frequencies

lðrÞ qðxÞ pðhÞ f‘qp (Hz)

0 0 0 0

0 0 1 281.9

1 0 0 1715

1 0 1 1737

1 0 2 1804

2 0 0 3430

Fig. 7. Radial modal amplitude A111 with coupling and without coupling.
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E ¼ 75� 106 N/m2, q ¼ 1200 kg/m3, and m ¼ 0:3 (bEE ¼ Eð1þ igÞ with the loss factor g ¼ 0:03). The air

speed of sound is c ¼ 343 m/s and the air density is q ¼ 1:2 kg/m3. The computed structural and acoustic

resonance frequencies are presented in Tables 2 and 3, respectively. In Table 2, the j (1, 2, or 3) index

indicates the dominant displacement component of the mode. The j ¼ 1 index indicates radial dominated
modes. Thus, the fundament structural is the radial (1,1) mode shown Fig. 2. On the other hand, the

fundamental acoustic mode is the (0,0,1) mode shown in Fig. 4 with a natural frequency of 281.9 Hz. The

commonly used approximation of assuming the length of the torus to be equal to the wavelength to predict

the acoustic fundamental frequency yields 311 Hz, i.e. c=½pðaþ bÞ�, which results in a �10% error (Sakata

et al., 1990). In the frequency range of interest, only the (0,0,1) acoustic mode can couple with the (1,1)

and (3,1) structural modes.

The ‘‘in-vacuum’’ and coupled responses were computed over the 0–1250 Hz range. The (1,1), (2,1), and

(3,1) tire radial modes and the (0,0,1) acoustic mode are present in the response. Figs. 7 and 8 show the
modal amplitudes for the (1,1) and (3,1) radial structural modes with (solid lines) and without (dashed lines)

acoustic coupling respectively. It is clear in these figures that the effect of the tire acoustic cavity modes in

the structural response is significant even though the acoustic resonance is not very close to the structural

resonance. The modal responses for acoustic resonant frequencies are similar in magnitude as the response

for the structural resonant frequencies. It is also interesting to note that the relatively high damping of the

tire structure does not damp out the energy in the acoustic resonance. Fig. 8 also clearly reveals the
Fig. 8. Radial modal amplitude A311 with coupling and without coupling.



Fig. 9. Spindle force Fz with and without coupling.
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coupling of the (1,1) and (3,1) mode introduced by the acoustic cavity (0,0,1) mode, i.e. the (1,1) mode is

easily identified in the response of the (3,1) mode.

The resultant force and moment at the spindle were also computed using the approach developed by

Molisani and Burdisso (2000). Figs. 9 and 10 show the spindle force and moment with and without acoustic

coupling, respectively. Again they show that the internal acoustic cavity resonance effects are important and
thus they should be accounted for in the prediction of vehicle interior noise. The results from this simple

analytical model show qualitatively similar trends as experimental observation.

The model allows to clearly identifying the coupling mechanisms between the structural and acoustic

modes. In addition, the results show that the acoustic cavity resonances have a significant effect on the

response of the system, i.e. the cavity resonances results in important forces and moments at the spindle,

which are the source of noise in the vehicle interior.
5. Conclusions

A simplified model of a tire including the dynamics of the acoustic cavity has been developed. The model

was used to quantify the effect of the cavity resonances on the tire response as well as the transmitted force

and moment at the spindle. The results clearly show that the acoustic resonance is important and needs to
be included in the analysis. The model also shows that the relative high damping of the tire structure is not



Fig. 10. Spindle moment My with and without coupling.

L.R. Molisani et al. / International Journal of Solids and Structures 40 (2003) 5125–5138 5137
effective in damping out the energy in the acoustic resonance. The model also allows to gain insight into the

coupling mechanisms between the acoustic and structural resonances.
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